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Harvard Bridge (pictured), Lower Road over Concord River Bridge in Concord, and Boston University Bridge (Scott Snelling)

Recent advances in smartphone-based sensors
and cloud computing have the potential to
increase the accessibility and usefulness of
structural health monitoring relative to in-situ
systems, writes Scott Snelling

ridge inspections often require expensive and risky access

techniques. It feels anachronistic for engineers to disrupt traffic

every two or six years to perform visual bridge inspections with

a hammer, tape measure, camera, and paper notebook, all while

carrying a smartphone outfitted with unused sensors such as
accelerometers, video and lidar.

In simple terms, structural health monitoring (SHM) uses sensors on
bridges to collect data. Next, this data is processed by computer algorithms
into a format that is useful for human bridge managers to inform their
resource allocation decisions. SHM data and insights can be used to
augment human-bridge inspections.

The purpose of this article is to survey technologies that have the
potential to improve bridge management in the coming years, including
smartphone-based sensors, computer-vision global vibration monitoring,
and computer-vision local damage detection. These technologies promise
to provide valuable, quantitative bridge-health data and insights for
decision makers to better allocate scarce maintenance resources.

Other emerging bridge management technologies, such as the use
of unmanned aerial vehicles (UAV) and augmented-reality headsets are
not addressed in this article, despite being popular topics of research in
the SHM community. UAVs may prove to be useful inspection tools on
many bridges but face ongoing administrative and legal hurdles in many
jurisdictions, despite having already surmounted most of the technological
and cost hurdles towards widespread adoption. Augmented reality
headsets, on the other hand, require continued technological development
before they will be ready for practical use as a bridge management tool.

There are some challenges with existing in-situ SHM systems in the USA.
Currently, only about 60 of the 600,000 highway bridges in the USA - or
0.01% - are under surveillance with an active SHM system (Rizzo, 2021).
Existing SHM systems have tended to be installed on long-span, signature-
type bridges that are in good condition. Meanwhile, more than 40,000
bridges in poor condition or designated ‘structurally deficient’ remain
unmonitored (ASCE 2021).

The most common sensors used for SHM are accelerometers, strain
gauges, temperature and wind speed. Less common sensor types include

video cameras, corrosion, cracking, displacement, force, tilt, and water level.

Three primary challenges that have slowed SHM from widespread
adoption include installation cost, sensor life, and difficulty in interpreting
the data.

Installation cost is a challenge for SHM because money spent on sensors
is money that may be better spent on bridge repairs. Owners with bridges
in poor condition know that their bridges need repairs but lack available
funds to implement them. Installation of an in-situ SHM system, including
a dedicated array of sensors, can cost tens or hundreds of thousands of
dollars per bridge.

Sensor life is a challenge because new bridges are designed for a service
life of 75 years or more. Sensors, electronics and the associated software
cannot be expected to achieve such a lengthy service life. Antithetically, it
is easier to fund and integrate the installation of SHM systems during the
initial design and construction of a new bridge, but SHM systems are most
valuable toward the end of a bridge’s service life many decades later.

Interpreting the data gathered with SHM is a challenge because
each bridge is unigue and subjected to uncontrolled loads with variable
boundary conditions including weather in the field. SHM techniques have
been more widely applied on aerospace structures and industrial rotating
machinery applications, which benefit from standardisation and access to
controlled shop environments.

Overcoming the challenges of installation cost, sensor life, and data
interpretation is necessary before SHM can be applied widely across a
nation's bridge portfolio.

Vibration measurement is central to many SHM approaches. Bridge
engineers intuitively grasp how to interpret stress-strain or displacement
data because these same structural properties are part of a typical design
process. Vibration measurements, in comparison, require interpretation
(signal statistics) before they can be understood. The basic concept is,

"if damage alters the load path through the structure, it will most likely
produce measurable changes in the lower frequency global modes of the
structure (Farrar 2013)."

Damage detection first requires having already collected training data
for each individual bridge in an undamaged reference state. By later
performing vibration measurements at the bridge in an unknown state,
damage is indicated in the case of a statistically significant difference
between the modal frequencies.

An important complication is that the changes in modal frequencies of
a bridge as a result of seasonal temperature variation are typically larger
than the changes in these features caused by damage. Temperature can
also have discontinuous effects on bridge frequencies, for example when a
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joint comes into contact with an abutment or adjacent span. Therefore, the
best practice is for bridge vibration data to be normalised for temperature
before attempting to detect anomalies that would indicate damage to the
structure. Ideally, training data should be gathered on each bridge across a
full range of temperatures, summer and winter, before attempting to detect
damage.

One of the axioms of vibration-based SHM is that “identifying the
existence and location of damage can be done in an unsupervised learning
mode, but identifying the type of damage present and the damage severity
can generally only be done in a supervised learning mode (Farrar 2013)."

Supervised learning is not cost effective for most bridges as it involves
creating a digital twin finite element model for every conceivable damage
scenario. By modelling, in advance, how a bridge will behave (vibrate) for a
given damage scenario, the SHM is able to recognise the damage when it
occurs.

Unsupervised learning is the most practical approach for SHM on most
bridges. SHM is used to detect anomalous changes in bridge vibrations
that suggest the bridge may have sustained damage. This approach allows
bridge managers to prioritise a bridge for follow-up human inspections to
investigate the source of the anomaly and identify the severity of damage
and recommend repairs, if any.

Three technologies that could revolutionise bridge management in the
coming years include smartphone-based sensors; computer-vision global
vibration monitoring; and computer-vision local damage detection.

These emerging technologies promise to circumvent the challenges
of installation cost and sensor life that inhibit in-situ structural health
monitoring. Meanwhile, the ever-increasing availability of computing power
and training data promise to surmount the challenge of data interpretation.

Two different approaches have been developed using smartphone-based
accelerometers: crowdsourced and inspector-gathered.

The first approach is crowdsourcing data gathered by the public during
their everyday crossings of bridges within passenger vehicles. This data
can be used to calculate the modal properties of bridge vibrations. Any one
dataset, consisting of accelerometer data from a single smartphone in a
single car passing over a single bridge, may give errant readings. However,
the research team at the MIT Senseable City Lab found that 50 data sets
was sufficient to achieve errors on the order of 10%, when compared with
conventional in-situ accelerometers. Each additional data set tended to
reduce the error by a further 1% (Matarrazo 2022).

Given that many bridges are crossed by thousands of cars containing
smartphone-carrying passengers each day, gathering a hundred datasets,
as required for highly accurate crowdsourced bridge modal frequencies, is
possible.

There are social hurdles to gathering crowdsourced bridge vibration
data, such as privacy and security concerns. Bridge owners would need to
get permission from the public to use their data. Bad actors would need
to be prevented from providing intentionally incorrect data. Google Maps
has successfully overcome similar issues while using Android smartphone
users' GPS data to forecast traffic delays and suggest alternative routes to
its map users. Strava produces ‘heatmaps' by aggregating the most used
running and cycling routes of its users. Likewise, auto insurance companies
gather their customer's smartphone-based sensor data, referred to as
‘telematics’, by offering incentives such as safe-driving discounts. Another
possible solution would be to limit data gathering among a sufficiently
large, vetted crowd, such as government employees.

A second smartphone-based sensor approach is for bridge inspectors to
gather vibration data while on site using an app such as APP4SHM. In this
scenario, the inspector places their smartphone in direct contact with the
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On the left is shown a screenshot of a Time Series measured at Harvard
Bridge on span 16 using APP4SHM. The left side of the graph is under
passenger car traffic. The right hand side of the graph shows several
trucks passing over the bridge.

On the right is a screenshot of an example Power Spectrum after
APP4SHM performed a Fourier Transform of the above Time Series
data. The dominant frequencies in this data set were 5.6Hz, 9.6Hz, and
3.6Hz. Note that on the same bridge span, the MIT Senseable Cities team
used traditional, wired accelerometers and crowdsourced smartphone
accelerometer measurements to identify three dominant frequencies:
2.05Hz, 2.66Hz, and 2.88Hz (Matarazzo 2018). The source of the
discrepancy with the author's measurements is unknown at this time.

bridge deck or individual structural members (Figueiredo 2022). However,
APP4SHM does not yet normalise the data for temperature. Another issue
is that bridge inspectors typically visit a bridge only once every two years.

Sensitivity is a potential disadvantage to the approach of using
smartphone-based sensors in that only significant damage to a primary
structural member is likely to be detected.

Even considering the above concerns, smartphone-based
accelerometers could prove a valuable tool for performing rapid structural
assessments after a catastrophic event, such as an earthquake or
hurricane, provided the system has been trained on data from each
undamaged bridge prior to the event.

Non-contact methods of measuring bridge deflections and vibration
modes have been developed by processing video of bridges under dynamic
loads. Cameras aimed at a bridge can monitor it from the shore. To
date, computer-vision global vibration monitoring has been successfully
applied by research projects in the field on numerous bridges over short
monitoring periods measured in minutes, hours or days (do Cabo 2020)
(Chen 2018). As an example, Rolands Kromanis of the University of Twente
in the Netherlands led a team that successfully used videos taken by
smartphones to measure the natural frequency of the Wilford Suspension
Bridge for pedestrians over the River Trent in the City of Nottingham,

UK. The error in the bridge’s fundamental frequency measured using
smartphone video versus traditional contact sensors was only 0.2%
(Kromanis 2020).
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A smartphone placed on the sidewalk measures bridge vibrations on
Boston University Bridge (Scott Snelling)

P Computer-vision global vibration monitoring has not yet been applied for
bridge management purposes over long-term periods measured in weeks,
months, or years. The challenges to long-term monitoring primarily relate
to data management, maintenance and calibration of the equipment over
time (Dong 2021). Camera shake from wind and nearby traffic, as well as
atmospheric changes in lighting and clouds further complicate long-range
measurements (Chen 2018).

Despite the above challenges, computer-vision vibration measurement
is a promising technology because it has the advantage of a ‘dense
sensor network' in that each pixel serves as a sensor. It also has the
advantage of low installation cost relative to in-situ sensors. ‘Eulerian video
magnification” or ‘motion magnification’ is a related technigue initially
developed by a team at Massachusetts Institute of Technology in 2013 to
“act like a microscope for visual motion" by applying software filters to
video. Subtle deformations - even those invisible to the naked eye - are
made readily observable and measurable in load-bearing structures.

RDI Technologies markets bundles of camera hardware, software,
training, and services under the brand name Motion Amplification. RDI
Technologies systems have been used to address structural deflection and
vibration problems in industries including power, mining, oil, manufacturing,
and aerospace.

An app called Dragon Vision is available for both Android and Apple
devices that brings motion magnification visualisation and measurement
capabilities to smartphones. Computer vision for local damage detection
has been successfully applied in the lab but has not yet been reliably
applied to automate visual bridge inspections in the field.

Computer-vision algorithms have successfully been developed to
detect the types of local damage. These are corrosion; cracks in concrete,
pavement, and steel; spalls in concrete; delamination in concrete; crack
propagation; and loose fasteners (Dong 2021). Interestingly, these
algorithms are not yet proficient at quantifying the extent and severity
of the damage. For example, corrosion-detection algorithms do not
yet have the capability to automate the estimation of section loss. The
crack-detecting algorithms work well for concrete and pavement but are
not able to reliably distinguish cracks from scratches on steel. Detecting
delamination in concrete requires an infrared thermographic camera to be
used at specific times of day when the temperature difference between a
spall and sound concrete will be greatest.

Computer-vision technologies are rapidly advancing, particularly in

support of autonomous vehicles. It is easy to envision a future when
computer-vision routinely flags potential damage areas for human bridge
inspectors to prioritise for further investigation.

In conclusion, the ubiquity of smartphone-based sensors and cloud
computing creates the potential for structural health monitoring to become
an accessible bridge management tool for the majority of owners on the
majority of their bridges. Researchers have surmounted many of the
technical hurdles towards using smartphone-based sensors and computer-
vision to monitor and detect damage in bridges. Quantitative data on
the health of their bridges can allow managers to better allocate scarce
maintenance and inspection resources. A safer and more cost-effective
portfolio of bridges can be achieved by prioritising resources towards
potential damage areas flagged by structural health monitoring systems.

Now is the time for bridge managers to start thinking about how they
can best apply these emerging structural health monitoring technologies
of smartphone-based sensors and computer-vision to benefit their
stakeholders ®

Scott Snelling PE is a partner at Roebling Lab, a bridge assessment
technology company
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