DESIGN OF MACHINERY FOR PAMUNKEY BRIDGE

SCOTT SNELLING PARSONS BRINCKERHOFF QUADE & DOUGLAS, INC.

OUTLINE

O PROJECT OVERVIEW

OMACHINERY DESIGN

O APPENDIX

Alternative B-2C -- "55-Ft. Movable"

LOCATION

ARIAL PHOTO

o DESIGN

o STUDY

LOCATION

ARIAL RENDERING

o STUDY

o DESIGN

o LOCATION

o STUDY

Eltham Bridge Replacement (55-ft. Movable)
project #0033-966-102 PE-101, RVV-201, C-501\$91 millionLord Delaware Bridge Replacement (55-ft. Fixed)
Project #0033-966-103 PE-102, C-501\$38.5 millionTotal Cost\$129.5 million

DESIGN

OUTLINE

O PROJECT OVERVIEW

MACHINERY DESIGN

- O OPERATING MACHINERY
- O BUFFERS & CONTROL SYSTEM
- o TRUNNIONS
- O CENTER LOCKS
- O LUBRICATION SYSTEM
- O APPENDIX

DESIGN MANDATE

o SIMPLE – EASY MAINTENANCE
o FULLY REDUNDANT
o FULLY IMMERSED GEARS
o EASY ACCESS FOR MAINTENANCE

Porte 33- Hest Yout comments Concept D Thiss type clements in a "Torque Tube"

REDUNDANT CONCEPT #1

DESIGN OF MACHINERY FOR PAMUNKEY BRIDGE

3RD STREET BRIDGE, DE

REDUNDANT CONCEPT #2

OPERATING MACHINERY

PAMUNKEY BRIDGE MACHINERY LAYOUT - PLAN SCHEME A

DESIGN OF MACHINERY FOR PAMUNKEY BRIDGE

SCHEME C

SCHEMES C & D

PAMUNKEY BRIDGE MACHINERY LAYOUT - ELEVATION

Reassess Redundancy o TRADITIONAL - \$2M o REDUNDANT - \$4M

O INCRESES IN SUPERSTRUCTURE AND FOUNDATIONS ARE ADDITIONAL.

SECONDARY REDUCERS

BUFFERS & CONTROL SYSTEM

BUFFERS & CONTROL SYSTEM

DESIGN OF MACHINERY FOR PAMUNKEY BRIDGE

TRUNNIONS

TRUNNIONS

TRUNNIONS

ERASMUS BRIDGE

CENTER LOCKS

LUBRICATION SYSTEM

OUTLINE

O PROJECT OVERVIEW

OMACHINERY DESIGN

APPENDIX

O A - PRIME MOVER SIZING

O B - HYDRAULIC CYLINDER GEOMETRY

APPENDIX A - PRIME MOVER SIZING

Table A.2 - Ratios of Minimum Required Power of Prime Movers, Using AASHTO 2000 Specs as the Baseline				
	2000 AASHTO	1988 AASHTO Same Times for Load Cond. A, B & C	1988 AASHTO Different Times for Load Cond. A, B & C	Hydraulic Operating Machinery
Highway Bridge	100%	121%	56%	62%
Railroad Bridge	100%	119%	55%	74%
Pamunkey Redundant Layout	100%	115%	66%	84%
Pamunkey Traditional Layout	100%	95%	55%	

APPENDIX B – CYLINDER GEOMETRY

APPENDIX B – CYLINDER GEOMETRY

CYLINDER COORDINATES OF CLEVISES (FIXED) PIER MOUNTED CLEVIS :

> $X_{\beta} = \alpha \cos(\beta) + L_{o} \sin(\Omega_{o})$ $Y_{\beta} = \alpha \sin(\beta) + L_{o} \cos(\Omega_{o})$

SPAN MOUNTED CLEVIS: $X_s(\phi): \alpha \cos(\phi - \beta)$ $Y_s(\phi): \alpha \sin(\phi - \beta)$

CYLINDER LENGTH: $L(\phi): -\sqrt{(x_{p}-x_{s}(\phi))^{2}+(y_{p}-y_{s}(\phi))^{2}}$

THRUSTING ANGLE .

$$\mathcal{V}(\phi): \cos\left(\frac{(y_i(\phi) - y_{\rho})}{L(\phi)}\right) - (\phi - \beta)$$

EFFECTIVE CYLINDER THRUST:

Fo: M(A)/a

ACTUAL CYLINDER THRUST:

F= Fo/cos(2/(p))

APPENDIX B – CYLINDER GEOMETRY

AKNOWLEDGEMENTS

o VDOT

Milton Pritchet (PM), Bob Jacobus (Mech)

o PB

Fred Parkinson (PM & Struc)

Mike Abrahams & Bill Kam (Mech)

Mark VanDeRee, Rick Newcomb, Akbar Siddiqui, and James Chin (Elec)

o VENDORS

James Alison, Steward Machine; Craig Winters, Taylor Devices; Rich Thomas, RACO International; Bobby Harris, Lincoln Industrial; Gill Detweiler, SKF

QUESTIONS?

QUESTIONS?

O PROJECT OVERVIEW

O PROJECT LOCATION

o STUDY

o MACHINERY DESIGN

- O OPERATING MACHINERY
- O BUFFERS & CONTROL SYSTEM
- o TRUNNIONS
- O CENTER LOCKS
- O LUBRICATION SYSTEM
- O APPENDIX
 - O PRIME MOVER SIZING
 - O HYDRAULIC CYLINDER GEOMETRY

PADDINGTON BASIN

PADDINGTON BASIN

